Progression of skills in Maths: Geometry

Skills:	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
2-D Shapes	recognise and name common 2-D shapes [for example, rectangles (including squares), circles and triangles]	identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid] compare and sort common 2-D shapes and everyday objects	draw 2-D shapes	compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes identify lines of symmetry in 2-D shapes presented in different orientations	distinguish between regular and irregular polygons based on reasoning about equal sides and angles. use the properties of rectangles to deduce related facts and find missing lengths and angles	draw 2-D shapes using given dimensions and angles compare and classify geometric shapes based on their properties and sizes illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius
3-D Shapes	recognise and name common 3-D shapes [for example, cuboids (including cubes), pyramids and spheres]	recognise and name common 3-D shapes [for example, cuboids (including cubes), pyramids and spheres] compare and sort common 3-D shapes and everyday objects	make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them		Identify 3-D shapes, including cubes and other cuboids, from 2-D representations	recognise, describe and build simple 3-D shapes, including making nets
Angles and Lines			recognise angles as a property of shape or a description of a turn identify right angles, recognise that two right angles make a	identify acute and obtuse angles and compare and order angles up to two right angles by size	know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles	find unknown angles in any triangles, quadrilaterals, and regular polygons recognise angles where they meet at a

			half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle identify horizontal and vertical lines and pairs of perpendicular and parallel lines	identify lines of symmetry in 2-D shapes presented in different orientations complete a simple symmetric figure with respect to a specific line of symmetry	draw given angles, and measure them in degrees identify: angles at a point and one whole turn (total 360°) $>$ angles at a point on a straight line and 12 a turn (total 180°) other multiples of 90°	point, are on a straight line, or are vertically opposite, and find missing angles
Position and Direction	describe position, direction and movement, including whole, half, quarter and three-quarter turns	order and arrange combinations of mathematical objects in patterns and sequences use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anti-clockwise)		describe positions on a 2-D grid as coordinates in the first quadrant describe movements between positions as translations of a given unit to the left/right and up/down plot specified points and draw sides to complete a given polygon	identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed	describe positions on the full coordinate grid (all four quadrants) draw and translate simple shapes on the coordinate plane, and reflect them in the axes

